Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 154: 105125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38158145

RESUMEN

Hirudo nipponia, a blood-sucking leech native to East Asia, possesses a rich repertoire of active ingredients in its saliva, showcasing significant medical potential due to its anticoagulant, anti-inflammatory, and antibacterial effects against human diseases. Despite previous studies on the transcriptomic and proteomic characteristics of leech saliva, which have identified medicinal compounds, our knowledge of tissue-specific transcriptomes and their spatial expression patterns remains incomplete. In this study, we conducted an extensive transcriptomic profiling of the salivary gland tissue in H. nipponia based on de novo assemblies of tissue-specific transcriptomes from the salivary gland, teeth, and general head region. Through gene ontology (GO) analysis and hierarchical clustering, we discovered a novel set of anti-coagulant factors-i.e., Hni-Antistasin, Hni-Ghilanten, Hni-Bdellin, Hni-Hirudin-as well as a previously unrecognized immune-related gene, Hni-GLIPR1 and uncharacterized salivary gland specific transcripts. By employing in situ hybridization, we provided the first visualization of gene expression sites within the salivary gland of H. nipponia. Our findings expand on our understanding of transcripts specifically expressed in the salivary gland of blood-sucking leeches, offering valuable resources for the exploration of previously unidentified substances with medicinal applications.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Perfilación de la Expresión Génica , Hirudo medicinalis/genética , Hirudo medicinalis/metabolismo , Sanguijuelas/genética , Sanguijuelas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteómica , Glándulas Salivales/metabolismo
2.
Brain Struct Funct ; 228(5): 1283-1294, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138199

RESUMEN

Coleoid cephalopods have a high intelligence, complex structures, and large brain. The cephalopod brain is divided into supraesophageal mass, subesophageal mass and optic lobe. Although much is known about the structural organization and connections of various lobes of octopus brain, there are few studies on the brain of cephalopod at the molecular level. In this study, we demonstrated the structure of an adult Octopus minor brain by histomorphological analyses. Through visualization of neuronal and proliferation markers, we found that adult neurogenesis occurred in the vL and posterior svL. We also obtained specific 1015 genes by transcriptome of O. minor brain and selected OLFM3, NPY, GnRH, and GDF8 genes. The expression of genes in the central brain showed the possibility of using NPY and GDF8 as molecular marker of compartmentation in the central brain. This study will provide useful information for establishing a molecular atlas of cephalopod brain.


Asunto(s)
Octopodiformes , Animales , Octopodiformes/genética , Octopodiformes/anatomía & histología , Octopodiformes/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
3.
Mitochondrial DNA B Resour ; 8(1): 161-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713296

RESUMEN

The mitochondrial genome (mitogenome) of Aleochara (Aleochara) curtula (Goeze, 1777) (Coleoptera: Staphylinidae) is reported. This mitogenome (GenBank accession no. OL675411) is 16,600 bp in size and consists of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNA). Most PCGs use typical mitochondrial stop codon (TAR) except for cox3, which uses a single T residue. The A, G, T, and C nucleotide base composition of the mitogenome is 40.61%, 7.66%, 40.34%, and 11.39%, respectively. The phylogenetic analyses recovered the monophyly of Aleocharinae.

4.
Genes Genomics ; 44(12): 1471-1476, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35982374

RESUMEN

BACKGROUND: The family Staphylinidae is the most speciose beetle group in the world. The outbreaks of two staphylinid species, Paederus fuscipes and Aleochara (Aleochara) curtula, were recently reported in South Korea. None of research about molecular markers and genetic diversity have been conducted in these two species. OBJECTIVE: To develop microsatellite markers and analyze the genetic diversity and population structures of two rove beetle species. METHODS: NGS was used to sequence whole genomes of two species, Paederus fuscipes and Aleochara (Aleochara) curtula. Microsatellite loci were selected with flanking primer sequences. Specimens of P. fuscipes and A. curtula were collected from three localities, respectively. Genetic diversity and population structure were analyzed using the newly developed microsatellite markers. RESULTS: The number of alleles ranged 5.727-6.636 (average 6.242) and 2.182-5.364 (average 4.091), expected heterozygosity ranged 0.560-0.582 (average 0.570) and 0.368-0.564 (average 0.498), observed heterozygosity ranged 0.458-0.497 (average 0.472) and 0.418-0.644 (average 0.537) in P. fuscipes and A. curtula, respectively. Population structure indicates that individuals of A. curtula are clustered to groups where they were collected, but those of P. fuscipes are not. CONCLUSION: Population structures of P. fuscipes were shallow. In A. curtula, however, it was apparent that the genetic compositions of the populations are different significantly depending on collection localities.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Repeticiones de Microsatélite , Variación Genética/genética , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...